Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Joel T. Mague, ${ }^{\text {a }}$ William L. Alworth ${ }^{\text {a }}$ and Maryam Foroozesh ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Tulane University, New Orleans, LA 70118, USA, and ${ }^{\text {b }}$ Department of Chemistry, Xavier University, New Orleans, LA 70125, USA

Correspondence e-mail: joelt@tulane.edu

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.039$
$w R$ factor $=0.092$
Data-to-parameter ratio $=14.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography

Printed in Great Britain - all rights reserved

1-Adamantyl propargyl ether

1-Adamantyl propargyl ether, $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}$, crystallizes in the 'extended' conformation with a close contact between the acetylenic H atom and the O atom of an adjacent molecule.

Received 22 January 2001
Accepted 6 February 2001 Online 13 February 2001

Comment

1-Adamantyl propargyl ether, (I), has been found to selectively inactivate the 2B5 form of rabbit cytochrome P-450 (Strobel et al., 1999). In order to provide data for computermodelling studies of the docking of (I) with the enzyme, the structure of (I) (Fig. 1) was determined. The compound crystallizes in the 'extended' conformation as the result of weak hydrogen bonding between the acetylenic H atom (H13 attached to C 13) and the O atom of a neighboring molecule. This leads to the formation of spiral chains of molecules running parallel to the a axis. (Fig. 2 and Table 1).

(I)

Experimental

Compound (I) was prepared as reported in the literature (Strobel et al., 1999) and recrystallized from a propan-2-ol/water mixture.

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}$
$M_{r}=190.27$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=7.4432$ (2) \AA 。
$b=10.9094$ (2) \AA
$c=13.2137$ (4) \AA
$V=1072.96(5) \AA^{3}$
$Z=4$
$D_{x}=1.178 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Nonius KappaCCD diffractometer (with Oxford Cryosystems Cryostream cooler)
ω scans with κ offsets
Absorption correction: multi-scan (HKL SCALEPAK; Otwinowski \& Minor, 1997) $T_{\min }=0.984, T_{\max }=0.988$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.092$
$S=1.02$
1808 reflections
127 parameters
H-atom parameters constrained

Mo $K \alpha$ radiation
Cell parameters from 10416
reflections
$\theta=2.5-30.0^{\circ}$
$\mu=0.07 \mathrm{~mm}^{-1}$
$T=120$ (2) K
Block, colorless
$0.23 \times 0.18 \times 0.17 \mathrm{~mm}$

10416 measured reflections
1808 independent reflections
1579 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.020$
$\theta_{\text {max }}=30.0^{\circ}$
$h=-10 \rightarrow 10$
$k=-15 \rightarrow 15$
$l=-18 \rightarrow 18$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0367 P)^{2}\right. \\
& \quad+0.2443 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.17 \mathrm{e}^{2} \AA^{-3} \\
& \Delta \rho_{\min }=-0.22 \mathrm{e}^{-3}
\end{aligned}
$$

Figure 1
Perspective view of (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by spheres of arbitrary radii.

Table 1
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 13-\mathrm{H} 13 \cdots \mathrm{O}^{\mathrm{i}}$	0.95	2.35	$3.251(2)$	158

Symmetry code: (i) $\frac{1}{2}+x, \frac{3}{2}-y, 2-z$.
Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO and SCALEPAK (Otwinowski \& Minor, 1997); data reduction: DENZO and SCALEPAK (Otwinowski \& Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

We thank the Chemistry Department of Tulane University for support of the X-ray laboratory, NIH grant CA38192 (to WLA) and Dr Frank Fronczek (Chemistry Department, LSU Baton Rouge) for collecting the low-temperature data set.

References

Bruker (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Figure 2
View of the hydrogen-bonding interaction in (I).

[^0]
[^0]: Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
 Otwinowski, Z. \& Minor, W. (1997). Methods Enzymol. 276, 307-326. Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
 Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Strobel, S. M., Szklarz, G. D., He, Y. Q., Foroozesh, M., Alworth, W. L., Roberts, E. S., Hollenberg, P. F. \& Halpert, J. R. (1999). J. Pharmacol. Exp. Ther. 290, 445-451.

